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Abstract. Following Wong’s approach to formulating the classical dynamics of charged particles in non-
Abelian gauge theories, we derive the classical equations of motion of a charged particle in U(1) gauge
theory on non-commutative space, the so-called non-commutative QED. In the present use of the procedure,
it is observed that the definition of the mechanical momenta should be modified. The derived equations
of motion manifest the previous statement about the dipole behavior of the charges in non-commutative
space.

In the last years much attention has been paid to the for-
mulation and study of field theories on non-commutative
spaces. Apart from the abstract mathematical interests,
there are various physical motivations for doing so. One of
the original motivations has been to get “finite” field the-
ories via the intrinsic regularizations which are encoded
in some non-commutative spaces [1]. The other motiva-
tion comes from the unification aspects of theories on non-
commutative spaces. These unification aspects have been
the result of the “algebraization” of “space, geometry and
their symmetries” via the approach of non-commutative
geometry [2]. Interpreting the Higgs fields of the theories
with spontaneously broken symmetries as gauge fields in
the discrete directions of multi-sheet spaces is an example
of this point of view on non-commutative spaces [3]. The
other motivation refers to the natural appearance of non-
commutative spaces in some areas of physics and recently
in string theory. It has been understood that string theory
is involved by some kinds of non-commutativities; two ex-
amples are
(1) the coordinates of bound states of N D-branes are rep-
resented by N ×N Hermitian matrices [4], and
(2) the longitudinal directions of D-branes in the presence
of a B-field background appear to be non-commutative, as
seen by the ends of open strings [5–7]. In the latter case,
we encounter a spacetime in which the coordinates satisfy
the canonical commutation relation

[x̂µ, x̂ν ] = iθµν , (1)

in which θµν is a constant second rank tensor. Since the
coordinates do not commute, any definition of functions or
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fields should be performed under a prescription for order-
ing of coordinates, and a natural choice is the symmetric
one, the so-called Weyl ordering. To any function f(x) on
ordinary space, one can assign an operator Ôf by

Ôf (x̂) :=
1

(2π)n

∫
dnk f̃(k) e−ik·x̂, (2)

in which f̃(k) is the Fourier transform of f(x) defined by

f̃(k) =
∫

dnx f(x) eik· x. (3)

Due to the presence of the phase e−ik·x̂ in the definition of
Ôf , we recover the Weyl prescription for the coordinates.
In a reverse way we also can assign to any symmetrized
operator a function or field living on the non-commutative
plane. Also, we can assign to the product of any two op-
erators Ôf and Ôg another operator as follows:

Ôf · Ôg =: Ôf� g, (4)

in which f and g are multiplied under the so-called �-
product defined by

(f � g)(x) = e
i
2 θµν ∂

∂xµ
∂

∂yν f(x)g(y) |y=x . (5)

By all this one learns how to define physical theories in non-
commutative spacetime, and eventually it appears that the
non-commutative field theories are defined by actions that
are essentially the same as in ordinary spacetime, with the
exception that the products between fields are replaced
by �-products; see [8] for a review. Though the �-product
itself is not commutative (i.e., f � g �= g � f) the following
identities make some of calculations easier in field theories:∫

(f � g)(x)dnx =
∫

(g � f)dnx
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=
∫

(f · g)(x)dn(x), (6)

∫
(f � g � h)(x)dnx =

∫
(f · (g � h))(x)dnx

=
∫

((f � g) · h)(x)dnx, (7)

∫
(f � g � h)(x)dnx =

∫
(h � f � g)(x)dnx

=
∫

(g � h � f)(x)dnx. (8)

By the first two ones we see that in the integrands always
one of the �’s can be removed.

Non-commutative QED (NCQED) is given by the ac-
tion

S =
∫

d4x (9)

×
(

− 1
4
FµνF

µν − ψγµ(∂µ − igAµ�)ψ − imc
�
ψψ

)
,

in which the field strength is defined by

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ]MB, (10)

in which the commutator is defined by Moyal by

[Aµ, Aν ]MB = Aµ � Aν −Aν � Aµ. (11)

The action is invariant under the transformations

ψ −→ ψ′ = U � ψ,

ψ −→ ψ
′
= ψ � U−1,

Aµ −→ A′
µ = U � Aµ � U

−1 +
i
g
U � ∂µU

−1, (12)

in which U(x) is the �-phase (U � U−1 = U−1 � U = 1)
defined by a function λ(x) via the �-exponential:

U(x) = exp�(iλ) = 1 + iλ− 1
2
λ � λ+ . . . (13)

Under the gauge transformation, the field strength trans-
forms as

Fµν −→ F ′
µν = U � Fµν � U

−1. (14)

We mention that the transformations of the gauge fields
as well as the field strength look like those of non-Abelian
gauge theories. Besides, we see that the pure gauge field
sector of the action contains terms which are responsible
for interaction between the gauge particles, again as in the
situation we have in non-Abelian gauge theories.

Among others, there is one approach due to Wong [9]
for the derivation of the classical equations of motion of
particles that have non-Abelian charges. In this formulation
there are a couple of equations among which one is for the
dynamics of the charged particle in spacetime, and one

for the dynamics of the isospin charge of the particle, as
an internal degree of freedom. The former is analogous to
the Lorentz force in electro-magnetism. Noting the non-
Abelian nature of NCQED, it is quite reasonable to use
the approach by Wong to derive the classical equations of
motion for charges in NCQED.

Let us review briefly Wong’s approach in the next lines;
see [10]1. The equations of motion for the fermionic matter
field in the fundamental representation and in the presence
of a background field Aµ(x) is

γµ(∂µ − igAa
µT̂a)Ψ(x) +

imc
�
Ψ(x) = 0, (15)

in which T̂a’s are the generators of the group, satisfying
[T̂a, T̂b] = ifc

abT̂c. Viewing this equation as a Schrödinger
equation (recalling ∂0 = c−1∂t) one reads the Hamilto-
nian as

Ĥ = cαi(p̂i − g�Aa
i (x̂)T̂a) +mc2β − gc�Aa

0(x̂)T̂a, (16)

in which αi and β are the Dirac matrices, and p̂i is for
−i�∂i. In the Heisenberg picture, one obtains the equations
of motion for operators:

˙̂xi =
i
�

[Ĥ, x̂i] = cαi, (17)

˙̂pi =
i
�

[Ĥ, p̂i] = gc�(αj∂iA
a
j + ∂iA

a
0)T̂a, (18)

˙̂
Ta =

i
�

[Ĥ, T̂a] = −gfc
ab( ˙̂xiA

b
i + cAb

0)T̂c. (19)

By defining the mechanical momenta by π̂i := p̂i−g�Ai(x̂),
one gets

˙̂πi = g�(cF a
i0 + ˙̂xjF a

ij)T̂a, (20)

in which the Fµν ’s are the field strengths of the non-
Abelian gauge theory, defined by F a

µν = ∂µA
a
ν − ∂νA

a
µ −

gfa
bcA

b
µA

c
ν . By comparison of this equation with that of

electro-magnetism Wong suggests the following for the non-
Abelian case:

mξ̈µ = g(F a
µνTa)ξ̇ν , (21)

in which ξµ(τ) represents the world-line of the particle, and
we used the change �T̂a → Ta. The dot in the equation is for
a derivative with respect to the proper-time. We mention
that in the above equation the Ta cannot be and are not
supposed to be operators (i.e., matrices) anymore, while we
interpret them as number functions capturing the degrees
of freedom coming from the group structure, satisfying the
equations of motion:

Ṫa + gξ̇µfc
abA

b
µTc = 0. (22)

From this we learn that the group degrees of freedom, also
known as isotopic spin, perform a precessional motion:
d/dτ(TaT

a) = 0.

1 Note the missing i =
√−1 before of the mass term in [10].
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Now we use Wong’s method for the case of NCQED,
and we do this in the first order of the non-commutativity
parameter θµν . The Lagrangian in this order is

L = − 1
4
FµνFµν − ψγµ(∂µ − igAµ)ψ

− 1
2
gψγµθαβ∂αAµ∂βψ − imc

�
ψψ +O(θ2), (23)

in which the field strength is

Fµν = ∂µAν − ∂νAµ + gθαβ∂αAµ∂βAν +O(θ2). (24)

The action corresponding to the Lagrangian (23) is
invariant under the first-order transformations in θ2:

ψ −→ ψ′ = eiλ
(
ψ − θµν

2
∂µλ∂νψ

)
+O(θ2),

ψ −→ ψ
′
= e−iλ

(
ψ − θµν

2
∂µλ∂νψ

)
+O(θ2),

Aµ −→ A′
µ = Aµ +

1
g
∂µλ− θαβ∂αλ ∂βAµ

− θαβ

2g
∂αλ ∂β∂µλ+O(θ2). (25)

The equation of motion for ψ is obtained to be

γ0(∂0 − igA0)ψ + γi(∂i − igAi)ψ +
1
2
gγµθαβ∂αAµ∂βψ

+
imc
�
ψ = 0. (26)

Hereafter we assume that non-commutativity is just for the
spatial directions: θ0µ = θµ0 = 0. So, the above equation
appears in the form:

γ0(∂0 − igA0)ψ + γi(∂i − igAi)ψ +
1
2
gθijγµ∂iAµ∂jψ

+
imc
�
ψ = 0. (27)

Again viewing this as a Schrödinger equation we read the
corresponding Hamiltonian as

Ĥ = −gc�A0 + cαi(p̂i − g�Ai) +
1
2
gcθijαµ∂iAµp̂j

+mc2β, (28)

in which we have usedαµ = (α0, αk) = (I, αk). The Heisen-
berg equations of motion are derived for the operators
as well:

˙̂xl =
i
�

[Ĥ, x̂l] = cαl +
1
2
gcθilαµ∂iAµ, (29)

2 The first-order transformations can be obtained by noting
the fact that the �-power of a function f(x) behaves as follows:
fn

� := f � f � . . . � f = fn + O(θ2), and hence we have U(x) =
exp�(iλ) = eiλ + O(θ2).

˙̂pl =
i
�

[Ĥ, p̂l] = gc�αµ∂lAµ − 1
2
gcθijαµ∂l∂iAµp̂j .

(30)

From the first equation we have cαl = ˙̂xl − 1
2 gcθ

il∂iA0 −
1
2 gθ

il ˙̂xk∂iAk + O(θ2); this will be used for later replace-
ments. For the case of NCQED, we see that the interaction
between fermions and gauge fields is different in comparison
with ordinary (Abelian and non-Abelian) gauge theories.
For the present case we have the following mechanical mo-
menta:

π̂l = p̂l − g�Al(x̂) +
1
2
gθij∂iAl(x̂)p̂j . (31)

This form of the mechanical momenta can be read also
from the covariant derivative of NCQED, Dµψ = ∂µψ −
igAµ � ψ, which changes by a similarity transformation
under gauge transformations. After this modification to the
Wong’s approach, one can calculate the time derivative as

˙̂πl = ˙̂pl − g�∂tAl − ig[Ĥ, Al] +
1
2
gθij∂t∂iAlp̂j

+
1
2
gθij i

�
[Ĥ, ∂iAlp̂j ]. (32)

After sufficient manipulations and replacements, and omit-
ting hats we obtain

π̇l = gc�(∂lA0 − ∂0Al) + g�ẋi(∂lAi − ∂iAl)

+
1
2
gcθijpj(∂0∂iAl − ∂l∂iA0)

+
1
2
gθij ẋkpj(∂k∂iAl − ∂l∂iAk)

− 1
2
g2c�θij

(
∂iA0 +

1
c
ẋk∂iAk

)
(∂jAl + ∂lAj)

+O(θ2). (33)

By defining the field strengths:

fµν = ∂µAν − ∂νAµ, (34)

Fµν = fµν + gθij∂iAµ∂jAν , (35)

and by setting g�c = e and µi := 1
2 gcθ

ijpj = e
2�
θijpj ,

we get

π̇l = e

(
Fl0 +

1
c
ẋiFli

)

+µi∂if0l +
1
c
µiẋk∂ifkl +

1
c
µ̇ifli +O(θ2). (36)

The first two terms are easily understood as the dynam-
ics of a charged particle in the background of the non-
commutative field strength Fµν . To understand the other
terms, we compare the result with those of a dipole electric
in the background of ordinary electro-magnetic fields. The
corresponding Lagrangian for a point-like electric dipole
can easily be derived by considering the dynamics of two
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equal mass particles with opposite charges q and −q, while
their relative distance  is small, defining the electric dipole
µ := q. So the starting point is

L =
1
2
mẋ2 +

1
c
µiẋifji + µifi0. (37)

So the equation of motion for the position of the dipole
appears as

mẍk = µj∂kf0j − 1
c
µ̇jfjk +

1
c
µj ẋi(∂kfji − ∂ifjk). (38)

After using the Maxwell equation of ordinary electro-mag-
netism3, one ends up with the equation like that for charges
in NCQED.

The result here by Wong’s approach in an arbitrary
background field has been pointed out also via the behavior
of open strings ending on D-branes in the presence of a B-
field [11], and also were obtained through the study of the
implications of possible non-commutativity in the present
world in some specific examples [12, 13]. From the string
theory point of view the situation can be described as
below. For example, the mode expansion of open string
coordinates ending on a D2-brane is given by [11]

X0 = x0 + p0τ +
∑
n �=0

a0
n

e−inτ

n
cosnσ,

Xi = xi + (piτ −Bi
jp

jσ) (39)

+
∑
n �=0

e−inτ

n
(iai

n cosnσ +Bi
ja

j sinnσ), i = 1, 2,

Xb = xb + pbτ +
∑
n �=0

ab
n

e−inτ

n
cosnσ, b = 3, . . . , 9,

in which the Bi
j are components of the B-field background.

Now we see that even for the case in which the oscilla-
tions are suppressed, the distance between the ends of
open strings on the D2-brane is not zero, appearing to be

3 And using the identity εjil∂k − εjkl∂i = εkil∂j − εkij∂l, for
i, j, k, l = 1, 2, 3.

∆i = Xi(σ = 0, τ) −Xi(σ = π, τ) = πBi
jp

j , by which we
expect a dipole behavior due to the ± charges we assign to
the ends of oriented open strings [4, 11]. This behavior of
open strings has been suggestive in formulating a theory for
fields of dipoles rather than for fields with the property that
their quanta are particles [14]. The rule of multiplication
of fields for dipoles is reminiscent of the �-product.
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